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Optimal storage capacity of neural networks at finite 
temperatures 

G M Shimt, D Kim$ and M Y Choi$ 
Department of Physics and Centre for Theoretical Physics, Seoul National University. Seoul 
151.74'2, Korea 
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Abstracl. Gardner's analysis of the optimal storage capacity of neural networks is extended to 
study fmite-temperature effects. The typical volume of the space of interactions is calculated for 
Strongly diluted networks as a function of the storage ratio a, timperature T and the tolerance 
parameter m, from which the optimal Storage capacity (rc is obtained as a function of T and m. 
At zero temperame it is found that (I~ = 2 regardless of m while ec in general increases with 
the tolerance at b i t e  temperatures. We  show^ how the best performance for given (I and T is 
obtained, which reveals a first-order transition from highquality performance to a lowquality 
one at low temperatures. An approximate criterion for recalling, which is valid near m = 1, is 
also discussed. 

1. Introduction 

Recently, the tools of statistical mechanics have been extensively applied to the study of 
collective properties of neural networks [l]; spin glass theory has played an important role 
in the growth of this new field [12]. In particular, the optimal (error-free) storage capacity 
for recurrent networks can be obtained by calculating the typical fractional volume of the 
space of interactions ((.Til]) satisfying the condition that, for a given set of pattems, each 
pattern is a fixed point of the deterministic (zero-temperature) dynamics 

where si(t) (= 33) (i = 1. . . . , N )  represents the state of the ith neuron at time i, and 
the synaptic coupling Jij determines the contribution of a signal fired by the j t h  neuron 
to the action potential on the ith neuron. This approach to systematic exploration of the 
space of interactions, which was pioneered by Gardner [3] and reformulated in terms of 
canonical ensemble calculation [41, has been applied in various directions [4-11]. The 
Hopfield model with general continuous couplings has been found to be capable of storing 
at most two uncorrelated random patterns per neuron without errors and larger number 
of patterns for biased patterns [3]. The network with discrete (king-type) couplings has 
also been extensively investigated since the replica-symmetry theory was reported to yield 
incorrect results for the optimal storage capacity [4,6,7]. The method is not limited to 
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Hopfield-type neural networks but applicable to multilayer networks as well as to simple 
perceptrons [5,11]. However, Gardner’s method is based on the concept of fixed points 
of the dynamics and, clearly, does not work if the dynamics is stochastic (i.e. at finite 
temperatures). In addition, it requires perfect matching so that each pattern is unerringly 
recalled at every site whereas, in practice, one usually considers a neural network to 
‘remembering’ or ‘recalling’ if the overlap between the network state and one of the patterns 
is larger than some given value. 

In this paper, we propose a scheme to define the optimal storage capacity at finite 
temperatures and study its temperature dependence. We introduce the tolerance parameter 
m(< 1) in such a way that the m -+ 1 limit corresponds to the perfect recall while (1 - m ) / 2  
measures the error allowed. We then calculate the typical fractional volume of the space of 
interactions for extremely diluted networks as a function of the storage ratio a, temperature 
T and the tolerance parameter m, which leads to the optimal storage capacity a, as a 
function of T and m. At zero temperature it is found that a, = 2 regardless of the tolerance 
parameter m.  At finite temperatures, on the other hand, the optimal storage capacity vanishes 
in the perfect matching limit (m + 1) and, in general, increases with the tolerance. We 
then discuss how the best performance is obtained for given a and T. We also propose an 
alternative criterion for recalling, which may be regarded as a simple approximate scheme 
to define the optimal storage capacity, and consider the optimal storage capacity of the 
dynamic model [U]  as well as of the extremely diluted model in this approximate scheme. 

The contents of this paper are as follows. In section 2, we propose a scheme to define 
the optimal storage capacity at finite temperatures together with an approximate scheme. 
Section 3 is devoted to the calculation of the optimal storage capacity of an extremely 
diluted neural network while section 4 presents results of the approximate scheme. A brief 
discussion is given in section 5. 
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2. Optimal storage capacity at finite temperatures 

One usually takes internal noise in the functioning of a neuron into account by extending 
the deterministic evolution rule (1) to a stochastic one: 

where the inverse temperature (,9 = 1 /T)  measures the width of the threshold region, i.e. the 
level of synaptic noise. The state s = [si} of the network of N neurons evolves stochastically 
according to equation (2) .  A given set of states of the network to be memorized by 
appropriately adjusting the couplings is called the set of patterns. We now define the 
overlap M,,(r) between the network state and the fith pattern <& = [e,?}(@ = 1, . . . , p )  by 

which also evolves stochastically along with s(t) .  When a network is recalling pattern 
p, the time average of M,(t) over a time scale sufficiently longer than the observational 
time but shorter than the lifetime of the local energy minimum should be close to unity. 
However, since the dynamics is stochastic, it cannot be strictly unity as in zero-temperature 
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dynamics. Therefore., we introduce the tolerance parameter m in such a way that the network 
is considered to be remembering the p t h  pattern if 

with ~N, in the appropriate range as mentioned ‘above. The quantity (1 - m ) / 2  is the 
maximum error allowed for the network to be qualified as functioning. It is expected that 
the time average n, wil1,be equivalent to the restricted thermal average 

where the thermal measure is restricted within a single pure state (containing the 
configuration 5”) [13]. In the stationary state the activity (si) of the ith neuron is determined 
by the coupled equations 

where a mean-field approximation has been used. Such an approximation is expected to be 
valid for diluted networks which we mainly consider in this work. Otherwise, a reaction 
term may be necessary. The optimal storage capacity is given by the upper bound of the 
storage ratio cr s p / N .  where p is the number of stored patterns. The problem reduces, 
according to Gardner [3], to the calculation of the typical fractional volume of the space of 
interactions which satisfies the following conditions: 

and 

X(Jij)* = N for each i .  
i 

The condition in equation (4) is required to fix the scale of temperature T .  The optimal 
storage capacity at temperature T is then determined by eliminating this fractional volume, 
which leads to aC as a function of T and m. This scheme will be applied to an extremely 
diluted neural network in the following section. In this model, only an extremely small 
fraction of the couplings among neurons are connected so that its dynamics can be solved 
in a simple manner [14,15]. However, calculation of the fractional volume for other generic 
neural networks is formidable as the thermal average has to be performed within one 
pure state. As a simple attempt, one ‘may use i h e  approximation (sL) UN $‘ and replace 
equation (3) by 

which states that the network state evolved by one time step from a given pattern has overlap 
with that pattern greater than m. This simple criterion presumably leads to results similar to 
those of equation (3) for m close to unity, where the network is expected to hover around 
the configuration 5, during the recalling state. The validity of this approximate scheme 
with regard to diluted networks is discussed in section 4. 
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3. Extremely diluted neural network 

In this section the proposed scheme is applied to an extremely diluted neural network, 
where, on average, there are C(< log N )  connections per neuron. Such a model was first 
studied by Derrida et al [14], and its properties of the basin of attraction was studied later 
by Gardner [15] and Amit eta1 [16]. The reason we can implement the scheme exactly is 
that the dynamics of the network can be solved in a simple manner [ 14,151. Extending the 
method of Keppler and Abbott [17], we describe the time evolution of the overlap M,(t) 
between pattern 
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and the network state by the onestep recursion relation 

Here the map 

where p(= T - ' )  is the inverse temperature. Dz denotes the Gaussian measure: Dz 
exp(-z2/2) dz/&, and the subscript h' denotes the [hrJ-dependence of the map with 

In the stationary state, M,(t) approaches M,(t + CO) = M; the value of which is 
determined by the stable fixed-point solution x satisfying 

x = & ( X )  (sa) 

I & F d ) I  = I F j 3 X ) l  < 1 (W 

where equation (8b) has been imposed to guarantee its stability. For given tolerance 
parameter m, the network is considered to be remembering the p t h  pattern if the value 
of the stationary overlap M; is greater than m. 

Now the main quantity to calculate is the fractional volume of the space of interactions 
( ( J i j ] )  for which every pattern can be remembered. The normalization condition is now 
given by 

X ( J i j ) '  = C 
i 

instead of equation (4). The number of the solutions of equation (8) with its value greater 
than m is formally given by 

so that the fractional volume can be written as 
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where e ( x )  is the skp function and the number of stored patterns has been scaled according 
t o ~ p  = 0rC. Here we are mainly interested in obtaining the optimal storage capacity ac. If 
the number of stored patterns exceeds uCC, there is no typical network ((Jij]) that yields 
the value of the stationary overlap which is greater than m for all patterns. In the limit 
01 + or,, the number NW of stable solutions approaches zero, and we may replace the step 
function 0(Nh,) by Nw. Furthermore the fractional volume vanishes only if NW = 0 for 
some p, which implies that the replacement e ( x )  + x would not affect the optimal storage 
capacity. The fractional volume to calculate is now given by 

Replacement of e ( x )  by x is, in general, also justified in the following sense. We may 
assume that. for typical (CP}, Nhp possesses a finite system-size-independent upper bound 
almost everywhere in the interaction space. This is reasonable since the map F u ( x )  is an 
average of N functions of the form 

This function is smooth and monotonic in x with a derivative having the same sign as 
h. Therefore the average over many possible h is a sum of two parts: the monotonically 
increasing part from contributions of h > 0. and the monotonically decreasing,part from 
h < 0. So, in practice, there are only a few solutions at most. If we denote the upper bound 
by NO, we then have the identity 

e(Nhp) < NW <&e&*) 
Integrating this over the interaction space, we immediately see that 

Vo < V < Ntc Vo. 

However, the fractional volumes are of the order of exp(-CN) so that (log V)/CN is the 
same as (log Vo)/CN in the thermodynamic limit N + 00. 

In this work, we consider the case that every pattern c/ to be stored is an independently 
distributed random variable, taking the value +1 with equal probabilities. ' The typical 
fractional volume 'ii = exp(( (log V))) for the random patterns involves averaging log V 
over the distribution of the random patterns (E" J, which may be obtained through the use of 
the well known replica trick. To facilitate the averaging~ over the distribution of the random 
patterns, we introduce &functions describing equation (7) with the help of the conjugate 
variable fir raised to the exponential form 

The average over the random patterns for the replicated volume ((V")) affects the 
exponential factor containing e,! in the above expression, and leads to the following: 
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where CY and j? are the replica indices and, for an extremely diluted network, the cumulant 
expansion has been cut-off at the second order [8]. Following 181, we assume the second 
term to be independent of site i, so that 
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Introducing the local order parameters 

together with their respective conjugate variables Q& and R& we obtain 

where 

with GI and 172 given by 

In the thermodynamic limit (N -+ m), C also approaches infinity, albeit slowly, and ( ( V " ) )  
can be computed through the use of the steepest-descent method. In order to find the saddle 
point, we assume the replica- and site-symmekic ansatz 

i E: = E RLa = S rum = s 

Q$ = Q qip = q  RLb = R r& = r  (CY #j?). 

With this ansatz, the function C in the limit n -+ 0 takes the form 

G = n N[  f ( E  - q Q  + sS - r R )  + gl + org~l 

where 

gl  
- 

+log(E - Q+ S - R )  + log( E - Q - S+ R)  E - Q + S - R + E - Q - S+ R 
-1 
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In the above expression NH is given by equation (9) with h" replaced by H (Hi], where 
Hi = -hi - -to - a t ; .  Since the saddle-point equations for the variables 
E ,  S, Q and R are algebraic, we can eliminate these variables and finally write the typical 
fractional volume in tiie form 

1 q - r x  
4 2(1-q)(l-~Xz) 

where x ( s  - ~ r ) / ( l  - q). 
To manipulate g2, we introduce the variable 

together with its conjugate variable x and use the integral representation of &-function. 
Noting the range of the variable %, we obtain 

where the functions f ( H .  M) and a M  f (H, M )  are given by 

f (H, M) af ( H ,  M ) / a M .  

Now the integration over a is easily performed and, in the thermodynamic limit, the 
steepest-descent method yields 

+ / Dt log/Dh exp[hf (H, M )  + x a M  f ( H ,  h)] (11) 

whereH = f i h - , / m t o - , h j t .  Inequation(ll), weshouldtaketheminimum 
over A and x rather than the maximum because the integration o;;er h and runs along, the 
imaginary aXis in the complex plane, which should be deformed to pass the saddle point. 
When the saddle point happens to lie on the real axis, one may conveniently sweep along 
the real axis and the saddle point corresponds to the minimum point along the real axis. 

Since v depends on s only~through x ,  it is straightforward to show that 7 reaches its 
maximum at x = 0 and it follows that we can set to = 0 in equation (1 1). Since q represents 
the typical correlations of the solution of equations (8), the typical fractional volume should 
shrink to zero as q approaches unity. Accordingly, the optimal storage capacity is, then 
determined in this limit. When q approaches unity the last term in equation (11) diverges 
as 7 (1 -q) - ' ,  and w'e write 
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where the function n,(H) is then given by 

nL,(H) -i(H +t)'+ h(1 -q)f(H, M)  +x(l -q) a ~ f ( H ,  M) 

and Ht is the value of H leading to the maximum of Q,. Therefore gz also exhibits (1 -q)-I 
divergence: 

and the saddle-point equation over A reads 

M =  Dtf(H,,M) (12) J 
where the dependence on the variables A and 1 is implicit through &(A, x, M; T). For the 
minimization over z, one should consider two cases. The first case is that the minimum 
occurs at x = 0. This  happens when the absolute value of SDt a M f ( H t ,  M) with 1 = 0 
and h = Ao, where A0 is given by the solution of equation (12) with x = 0, is less than 
unity. In the other case, the minimum occurs at z # 0 and the saddle point in the (A, x) 
plane is given by the solution of equation (12) together with the equation 

-sign@) = Dt a ~ f ( H , ,  M). - s  
In both cases, we denote the saddle point to be (ho,&), and write gz in the form 

where 

a;'(M; T )  5 Dt[ t  + Ht(Ao.Xo, M ;  T)]'. s 
Combining the above, we finally obtain the typical fractional volume: 

which vanishes for 

Interestingly, ao(M; T) also represents the maximum storage capacity for the stationary 
value of the overlap Mi in the range M < M; < M + 6M. Due to the mean-field nature 
of the network, the optimal storage capacity is given by the maximum value of a0 for the 
given range of M. 

Since a o ( M ;  T )  defined in equation (13) involves minimization with respect to two 
variables (A, x) in addition to the two Gaussian integrals over t and z (representing the 
thermal average), we computed them numerically. Figure 1 shows the typical behaviour of 
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M 

Figure 1. Typical behaviour of the maximum storage capacity a0 as a function of the stationary 
overlap M' at various temperatures: from top to bottom. T = 0.0.3.0.5 and 0.7. respectively. 
Detailed behaviour at T = 0.3 and 0.5 is displayed in the inset. 

a&f; T )  for several values of T ,  with the detailed behaviour for T = 0.3 and 0.7 displayed 
in the inset. There exist three types of M-dependence on ao(M;  T )  according toT.   when^ 
T is higher than TI(= 0.566), the maximum capacity a0 decreases monotonically with M. 
For T < q, a0 exhibits a local minimum as well as a local maximum (as shown in the inset 
of figure 1). This local maximum (at non-zero M )  is, in fact, the global maximum of a0 
for T lower than Tz(X 0.414) whereas ai reaches its maximum at M = 0 for TZ < T < T I .  

In contrast to the naive expectation, the maximum storage capacity a0 is not monotonic 
with M (or with the error allowed) when the temperature is lower than c. It is of interest to 
note that there are two types of fluctuation in the dynamics: one is the thermal fluctuations 
associated with the synaptic noise and controlled by the temperature T while the other 
is the dynamicalfluctuations described by m. The latter fluctuations come from 
the distribution of states with definite overlap M and may be considered to be driven by 
the dynamics itself. In general, thermal fluctuations randomize spin orientations'and tend 
to decrease the capacity whereas dynamical fluctuations affectthe capacity in a more or 
less subtle manner because the level of dynamical fluctuations depends on the overlap. At 
zero temperature (T = 0) and for M = 1 neither thermal nor dynamical fluctuations are 
present. In this limit, perfect matching is allowed, leading to a0 = 2 similar to Gardner's 
result [3]. However, a small departure from M = 1 induces dynamical fluctuations'in the 
potential of the neurons, so that the maximum storage capacity a0 decreases rapidly as M 
is reduced. At T = 0, as shown in figure 1, 010 reaches its maximum at M = 1 and hence 
we have the optimal storage capacity ac = 2 regardless of the tolerance parameter m. At 
finite temperatures thermal fluctuations always exist, which prohibits perfect matching. In 
this case it may be expected that allowing some error (i.e. m < 1) increases the capacity. 
On the 'other hand, reducing the overlap introduces dynamical fluctuations and eventually 
reduces the capacity if the temperature is not too high (T < TI) .  Near M FZ 0, reduction in 
the overlap generally increases the capacity at any temperature since dynamical fluctuations 
favour small values of the overlap. Here we stress that one should not expect the divergence 
of the capacity in the limit m + 0 because the trivial solution M; = 0 is not included. 

From the curves of ao it is straightforward to get the optimal storage capacity a, defined 
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by equation (14) for given tolerance parameter and temperature. The typical behaviour of 
cr, as a function of m is shown in figure 2 at several temperatures. At temperatures higher 
than TI (m 0.566), [YO is a monotonic decreasing function of m. Consequently, we have 
[Yc(m; T) = ao(M = m; T), and the curves of [Y, are identical to those of [YO. For T < TI, 
there appears a plateau on which the optimal storage capacity is constant over some range 
of the tolerance parameter. (See figure 2. The boundary of this region is displayed by the 
dotted line.) For T < Tzfm 0.414), it is interesting to note that [YO reaches its maximum 
near M sz 1 and that a large value,of the overlap is mostly favoured. 

G M Shim et a1 

1 

0.8 4 T = 0.3 

o.2 t - 
'0 0.2 0.4 0.6 0.8 1 

m 

Figure 2. Typical behaviour of the optimal storage capacity ac as a function of the tolerance 
panmeter m at various temperatures: from top to bottom. T = 0.3,0.5 and 0.7, respectively. 
The dolted curve shows the boundary of the region in which ac is constant, 

Consider a problem in which we want to store and recall [YC random patterns in the 
network at temperature T at the best performance, that is we want the stationary overlap to be 
as large as possible. When 01 is small, one can easily find a set of couplings ( [ J i j ] )  that yields 
the stationary value of the overlap near unity. As [Y increases, it becomes more difficult 
to find such a set of couplings. In general the quality of performance will deteriorate with 
the storage ratio a. Since q,(M; T )  is the maximum storage capacity with the stationary 
overlap M at temperature T ,  the best performance MP(q T) for given storage ratio [Y and 
temperature T is determined by the largest value of M for which q ( M ;  T) is greater than CY. 
This implies [Y = aC(Mp; T )  and the curve of the best pelfonnance also corresponds to the 
optimal storage capacity. Therefore figure 2 also represents curves of the best performance 
with the abscissa and the ordinate denoting Mp and [Y, respectively. As the number of 
stored patterns increases, a first-order transition from good to poor performance occurs at 
temperatures not too high (T < Ti). Interestingly, at low temperatures (T < Tz) the network 
near saturation naturally favours highrquality performance; there are no networks yielding 
low-quality performance. 

4. Analysis using approximate criterion 

In this section, we study the proposed scheme with the approximate criterion given by 
equation (5) instead of equation (3) because it is very difficult to solve the dynamics of 
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neural networks in general. In fact even with this approximation the calculation is not easy 
and we implement the calculation only for extrcmcly diluted neural networks. The validity 
of the approximation will be tested against the result of section 3. The fractional volume 
V of the space of interactions ((Jjj]) satisfying equations (4) and (5) is given by 

Although there is no restriction on the correlations between Jij and Jji, different sites i and 
j are not decoupled because of equation (5); thereby it is not easy to calculate the typical 
fractional volume v exp(((1og V))), which involves the average (0) of log V over the 
distribution of the random patterns (E”) .  Nevertheless the calculation can be performed for 
an extremely diluted network as discussed in the previous section. In this case the cumulant 
expansion can be cut-off as before at the second order. 

Following a procedure ,similar to that in section 3, we obtain the typical fraction& 
volume in the form 

~ ~ 

(15) 
1 1 q - r x  
3 

Iog(1 - q) + - log(1- x’, + - 
2 (1 - q) ( l  4 2 )  

where the function gz in this case is given by 

with the same notation as in section 3. Using the integral representation of the &function 

+iW dh l N  
2x1 f N N i=l 

tanhhi - m )  = dM li, - exp (- Nh(M - - tanhhi) 

and noting the range of the integral variable M ,  we obtain 

where to and h are to be determined by the saddlepoint equations. Since 7 depends on 
s only through x .  it is straightforward to show that v reaches its maximum at x = 0 and 
to = 0. 

The optimal storage capacity can be determined according to the condition that the 
typical fractional volume shrinks to zero, which happens as q approaches unity. In this 
limit, the typical fractional volume given by equation (15) has the leading term: 
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where Q ( H )  = -f(H + t)' + h ( l  - q )  tanh(gH) in this case and Ht is again the value 
of H leading to the maximum of Qt. Note that H, depends on h(l - q) and T in addition 
to t .  Thus, in the limit q + 1 and h --f 00 with h(1 - q)  fixed, the saddle-point equations 
read as 

G M Shim et a1 

where H, is, by definition, given by the solution of the equation 

f2;(H) = - ( H + t )  + h ( l  -q)g[ l  -tanh'(BH)] = O .  (17) 

Equation (17) has a unique root unless h(l  - q)  z (3&/4)T2 and t -  c t c t+. (In this 
range equation (17) has three roots.) Here t* are defined to be 

tk = Qi=,[H = -Ttanh-'($cos($(ir id)))] with 6 =cos-] 

At zero temperature it is straightforward to compute Hi and to write the optimal storage 
capacity in the form 

3&T2 
(4hU - 4 ) ) '  

oIc = (l-) Dt t'T' 
while, at finite temperatures, equations (16) can be solved numerically. 

In , I >  

Figure 3. The optimal storage capacity ac as a function 
of the tolerance parameter m a1 T = 0.0.3, 0.5.0.7 and 
2.0 when Ihe alternative approximate criterion given by 
equation (5) is used. 

Figure 4. Detailed behaviour of the optimal storage 
capacity for the tolerance parameter m near unity. 
Full and dotted curves are results of equations (3) and 
(5). respectively. 
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Figure 3 displays the optimal storage capacity cu, as a function of the tolerance parameter 
m at various temperatures. The overall dependence of cyc on m is  qualitatively different 
from that obtained in section 3. In particular ac diverges as m + 0. Our approximate 
criterion loses its validity near m = 0 as it should. However, m-dependence of ac near 
m = 1 is not too disparate from that of figure 2 at finite temperatures. The cyc curves at 
various temperatures shown in figure 3 are reproduced to expose the detailed behaviour near 
m = 1 in figure 4, which, for comparison. also displays the corresponding curves obtained 
in section 3. At given temperature the two curves indeed coincide with each other in~the 
limit m + 1. Therefore we conclude that the approximate scheme based on equation (5) is 
valid for m close to unity. 

It is of interest to apply the above scheme to the dynamic model of neural networks [12], 
where a neuron is forced to have state si = -1 during the refractory period. As a 
consequence, Garduer’s method cannot be applicable even at zero temperature. In the 
dynamic model, equations describing the time evolution of relevant physical quantities 
generally assume the form of differential-difference equations due to the retardation in 
interactions. In particular, the activity ( s i @ ) )  of the ith neuron at time t and the overlap 
M,(t)  between the network state and the pth pattern at time f are determined by the 
differential-difference equations .~ .~ ~~ 

respectively. Here a represents the ratio of the refractoryi period to the time duration of the 
action potential. In the stationary state, the overlap MW takes the form 

Since cr Cj Jijc,!’ tends to be positive for typical types of interactions, we may, in the 
t extreme-dilution limit, make an approximation in equation (IS) as 

The optimal storage capacity of the dynamic model is now determined by equations (16) 
except for that the tanhx function is replaced by 4a tanhx/[(l + 2a)’ - tanh’x]. Unlike 
the Hopfield model which discretizes the time, the dynamic model takes into account the 
existence of relevant time scales and, consequently, displays the overlap MP = 1/(1 +a) in 
the case of perfect recall. This is reflected in the equation corresponding to equation (16b). 
For comparison with the Hopfield model, therefore, we rescale the tolerance parameter m 
by & = (1 + a)m, and finally get 

at zero temperature 



3754 

5. Discussion 
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We have proposed a new method for studying the optimal storage property of neural 
networks at finite temperatures and investigated the optimal storage capacity CY, for an 
extremely diluted network as a function of temperature T and tolerance parameter m. At 
zero temperature, it has been found that CY, = 2 regardless of the tolerance parameter whereas 
at finite temperature aC vanishes in the perfect matching limit (m -+ I), in general increasing 
with the tolerance. The best performance for given storage ratio a and temperature has also 
been obtained. At low temperatures (T < TI ~3 0.566) the network exhibits a first-order 
transition from high- to low-quality performance as the number of stored random patterns 
is increased. High-quality performance seems to be naturally favoured by extremely diluted 
networks if the level of noise is not too high. We have also studied an approximate scheme, 
which yields qualitatively different results except near m = 1. The crude approximation 
(si) = 5; used in equation (5)  has been found not to be so good in the whole range of m; 
for m close to unity, however, it can be regarded as an accurate approximation. 

Instead of the proposed criterion for recall, one may consider a slightly different 
criterion: the time average of t:s;(t) for each site i should be greater than m. In the 
same spirit as that in equation (5) ,  one may consider the problem of calculating the typical 
fractional volume of the space of interactions  satisfying equation (4) and 

for each i .  The problem is then equivalent to Gardner's problem with her parameter K given 
by K = T tanh-' m, which implies that the required basin of attraction grows larger with the 
level of synaptic noise and with the accuracy of recalling. At zero temperature this leads 
to the optimal capacity U, = 2 regardless of m, whereas at finite temperatures CY, increases 
with the tolerance. Despite their resemblance, the behaviour of the optimal storage capacity 
with the criterion (19) is qualitatively different from that of (5). Although the argument of 
tanh in both cues is a sum over mxny sites j ,  it should be strongly correlated with 5; if 
the network ( ( J i , ) )  is to function as associative memory. In general, the overlap on site 
i ,  given by the right-hand side of equation (19), will vary from site to site according to 
some distribution with finite varianceLCtiterion (5) in the large N limit requires the overlap 
averaged over that distribution to be greater than m while that of (19) demands that the 
overlap be greater than tn for each site. 

Finally, there are several points for further investigation. Since we have assumed the 
replica- and site-symmetric ansatz in the calculation of the typical fractional volume, its 
stability against replica-symmetry-breaking should be checked. It would also be of interest 
to extend our results to the fully connected networks and other types of networks. 
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